
Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46

ISSN 1895-7595 (Print) ISSN 2391-8071 (Online)

Received: 13. October 2020 / Accepted: 30 April 2021 / Published online: 10 June 2021

condition monitoring,

clustering tracking,

unsupervised learning

Jonas HILLENBRAND1*

Jürgen FLEISCHER1

UNSUPERVISED DETECTION OF STATE CHANGES DURING OPERATION

OF MACHINE ELEMENTS

Interpretation of sensor data from machine elements is challenging, if no prior knowledge of the system is

available. Evaluation methods must adapt surrounding conditions and operation modes. As supervised learning

models can be time-consuming to set up, unsupervised learning poses as alternative solution. This paper introduces

a new clustering scheme that incorporates iterative cluster retrieval in order to track the clustering results over

time. The approach is used to identify changing machine element states such as operating conditions and undesired

changes, like incipient damage or wear. We show that knowledge about the evolving clusters can be used to

identify operation and failure events. The approach is validated for machine elements with slide and roll contacts,

such as ball screws and bearings. The data used has been captured using vibration and acoustic emission sensors.

The results show a general applicability to the unsupervised monitoring of machine elements using the proposed

approach.

1. INTRODUCTION

Growing automation and digitalization in modern factories increase the importance

of capital as a production factor for companies. Large investments in new, more capable

machinery rather than human work force raise the necessity for appropriate maintenance

solutions. In this context, maintenance must meet growing requirements in terms

of availability, reliability, and flexibility of machinery or facilities [1, 2]. Achieving greater

autonomy and self-reliance requires that these systems function without human intervention

and decision making. Especially in setups where no prior knowledge of the system and

historical data exists, supervised learning can be too time-consuming. Here, unsupervised

learning poses an alternative solution to discover and structure useful information from

uncharted data [3].

Real manufacturing equipment is subject to complex operation modes and, hence, data

streams of installed sensor systems are subject to the related dynamic changes. There is a need

of methods to recognize these changes and patterns continuously. State-of-the-art anomaly

detection systems only identify these changes in constrained setups. When confronted with

1 wbk Institute of Production Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
* E-mail: jonas.hillenbrand@kit.edu

 https://doi.org/10.36897/jme/136311

mailto:jonas.hillenbrand@kit.edu
https://doi.org/

36 J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46

healthy and faulty modes superposed with different operation regimes, they fail to distinguish

between anomalies and operation modes [4].

We address this issue introducing a new cluster model for tracking cluster events over

time. These events can then be used to assess a system, machine, or component in a more

reliable fashion although operating conditions are unknown and superposed by failure modes.

This cluster model is designed to be memory-efficient, stores historic cluster states, and

enables analysis of temporal cluster evolution. Furthermore, we discuss cluster transition

events of the state of the art in cluster tracking to further their use in a condition monitoring

(CM) perspective.

2. STATE OF THE ART IN DATA STREAM CLUSTERING AND CLUSTER

TRACKING APPLICATIONS

The term data stream describes a sequence of data items 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛 such that these

items arrive or are being read in an increasing order of the index 𝑖, where 𝑛 → ∞ [5]. In

the context of CM, data streams may arise from vibration sensors, measurements of motor

current from feed axes, or temperature readings of machinery. With ever-increasing data

streams, it is paramount to process data in an efficient way and store representative structures

in a memory-efficient way. Common storage principles for representative data structures in

clustering applications are feature vectors, originally introduced in [6], prototype arrays, and

grids or trees. A summary of these structures can be found in [7].

Detecting state changes during the operation of mechanical systems that are exposed to

natural wear is a popularly discussed field in anomaly detection and CM applications.

A common technique for transition detection between a healthy and a degradation mode is

the use of state-space model estimators as provided in [8]. These models are used to predict

future states based on an estimated state vector learned from initial data. Although, if

the underlying system changes due to wear, the model does not represent these changes

anymore. Real-world systems are usually subject to such non-linearities and the missing

causality between input data and output data due to degradation effects.

In contrast, data stream cluster algorithms and tracking of cluster evolution provide

mechanisms to observe and follow these changes without supervised training. There are

various techniques for data stream clustering, presented in a survey by [7]. Areas of interest

are geographic data to observe forest coverage, grid computing, and network intrusion

detection. Other data streams that have been addressed stem from stock market analysis,

voice-over-IP data, sensor networks in the civil engineering context, social network analysis,

and text data streams. One of the most used data stream algorithms based on the literature

review is CluStream [9]. The algorithm enables processing of continuous data streams in

a micro- and macro-clustering phase while maintaining so-called snapshots, i.e. historic

cluster states, in a memory-efficient way. A drawback of this algorithm is the use of the cluste-

ring method k-means, which is unable to discover clusters of arbitrary shape and requires

a-priori knowledge about the expected number of clusters 𝑘. This was addressed by [10] who

introduced a hierarchical clustering scheme called ClusTree. The algorithm is hyperpara-

J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46 37

meter-free and enables the detection of changing data, novelty, and outlier detection on

the stream. But still, both algorithms abstract the raw data in the form of micro clusters

consisting of cluster feature vectors [7]. In the case of clustering objects from sensor data,

such as extracted vibration features, using feature vectors results in a twofold dimensionality

reduction, which leads to further loss of information. An alternative approach using grid-

based clustering (D-Stream) is introduced in [11]. The approach does not require definition

of the number of clusters a-priori, but introduces new hyperparameters in order to choose

the grid size. Furthermore, the mentioned data stream algorithms operate with the concept

of discarding old cluster objects, usually based on decay times [7], to avoid excessive memory

requirements. This concept is in conflict with the goal of detecting evolving cluster structures

over time. A recent approach from [12] solves this issue by introducing a two-level architec-

ture with an online component, which clusters the stream data, and an offline component,

which saves recurring cluster structures (called concepts) for later use. A drawback stems

from the lack of support for arbitrarily shaped clusters, which decreases the usability in

applications where no prior information about shape of clusters and data distribution is

known.

In the context of CM, data stream clustering is discussed with regard to bearing

prognostics [13]. The authors introduce a new data stream clustering method using belief

function theory. They show that features extracted from vibration measurements correlate

with the change from healthy to degradation modes during life cycle tests of bearings as new

clusters develop. However, their approach does not cover mechanisms to identify these

changes over time, but rather delivers them as output for further evaluation. Here, cluster

tracking provides mechanisms to automatically uncover these changes over time.

Knowledge about the cluster evolution can be used to interpret a system’s state and

the changes it undergoes. A fundamental and algorithm-independent framework called

MONIC, modelling and monitoring cluster transitions, has been introduced by [14].

The authors introduced definitions for external and internal transitions of a cluster. These

transitions and their interpretation are then discussed for document and text mining tasks on

the ACM digital library. The framework claims general applicability on any clustering

problem and cluster algorithm but has not been applied to CM or anomaly detection setups

yet. A more recent contribution is ChronoClust, a novel density-based clustering algorithm

for processing time-series data and tracking its temporal evolution [15]. Even though

the approach does not explicitly cover data stream clustering, it involves tracking mechanisms

that address the time-sensitive supervision of cluster evolution. It was applied on biological

cytometry data.

Regarding CM applications, a memory or storage problem arises that is not covered by

common data stream clustering problems. As the time scale of a system’s degradation (e.g.

weeks, months, or even years) greatly differs from the sampling periods of the used sensors

(ranging from a few Hz to several MHz), data must be compressed and analysed continuously.

Otherwise, historic features extracted from the data stream must be discarded. Still, features

extracted from a sensor data stream a week ago can be crucial for evaluation of current

machine states concerning gradual wear effects. This work introduces a new data structure

and cluster mechanism for describing evolving cluster states. The approach aims at achieving

a balance between in-memory cluster history, memory efficiency, and execution speed in

38 J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46

terms of infinite data streams. Our proposed cluster model relies on detected cluster boundary

points (hence ClusterBoundaryTracking) and applies and adapts the cluster tracking

transitions from [7, 14]. Moreover, these general cluster transitions are related to system state

changes in a CM context, such as detection of operation modes, but also occurrence of wear

or degradation. The cluster model and tracking scheme is then evaluated on simulated data

streams of bearing and feed axis experiments.

3. CLUSTER BOUNDARY TRACKING APPROACH

In this article, the terms cluster state and cluster transition are used to describe

the results of the cluster algorithm and the change between different cluster results from one

point in time to the next and from one cluster iteration to another. Within the clustering step,

an adequate clustering algorithm is used to generate cluster states. As the number of clustering

algorithms is vast and a lot of research has emerged in recent years, we decided to take this

into account by defining a generalized interface for clustering algorithms in our MATLAB

setup. On top of the clustering method, which is then interchangeable, we implemented our

ClusterBoundaryTracking cluster tracking scheme.

To enable parametrization of the methods, the interface defines a hyperparameters

property to store any kind of configuration parameters for a specific algorithm, e.g. DBSCAN

contains the Epsilon and MinPts hyperparameters. See [16] for more details on DBSCAN.

Furthermore, the interface defines two methods referred to as cluster and estimate-

Hyperparameters. The method cluster receives the datapoints to cluster as input and delivers

the clusterIndices that store the information as to which datapoint belongs to which cluster,

and the number of resulting clusters kCluster. Whereas estimateHyperparameters can be used

to continuously improve the clustering result through repeated estimation of the used

hyperparameters. In the context of this paper, DBSCAN was used and its parameters

estimated according to the combined procedures in [16, 17].

3.1. CLUSTER MODEL

In order to track the temporal evolution of clusters, two data structures are defined:

ClusterState and ClusterTransition. The data structure ClusterState is used to describe

the geometry of the gained cluster result, a central aspect being the representation of clusters

via its border points, while other data points in the clustered group can be removed from

memory. With growing cluster size, the border points do not increase as strongly as

the number of total data points. Even though it depends on the dataset, a qualitive

development of cluster and border points is shown in Fig. 1 (on the left).

Whenever new data arrives, a new clusterState is stored. These saved clusterStates can

later be used for further analysis. Outlier points are also kept in the model, as these points can

evolve from outlier to cluster points over time.

The overall ClusterState structure is shown as UML class diagram in Fig. 2b.

The properties marked in green are the ones that are kept in memory, yellow properties can

J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46 39

be calculated on demand, and grey ones will be discarded as soon as they are not needed

anymore. Outliers are not explicitly mentioned as a separate data property, but their

association with their corresponding data points is contained within clusterIndices (index −1

as separate cluster group).

Fig. 1. Number of cluster points vs. border points during clustering (left), visualization of border and cluster

points (right)

The definitions of possible cluster transitions based on findings in [14, 15] are compiled

in Table 1. The cluster transitions can be divided into three categories: internal, external, and

global. Internal cluster transitions describe the shape or data distribution of a single cluster

group, whereas external transitions consist of the interaction between cluster groups (two or

more). The global category designates transition types that refer to the entire dataset and/or

are related to changes in the clustering method, e.g. change of hyperparameters.

Table 1. Possible cluster transition types and their condition monitoring perspective

Transition Type Category Description Condition Monitoring Perspective

Compactness
Transition

Internal

A compactness transition occurs if the contemplated
cluster becomes compacter or diffuser compared to
a previous state. The standard deviation can be used
as a measure for compactness.

If the compactness increases and the cluster size
stays the same, the system operates in a stationary
mode.

Size Transition Internal
A size transition occurs when the cluster shrinks or
expands. A measure for the cluster size is the sum
of all data points within the cluster.

If the cluster size grows, it can be due to
process/operation instability.

Location Transition Internal
A location transition occurs when the center or
the distribution of the cluster shifts.

A cluster center moving away from its initial position
can correspond to a sensor drift or slow wear
process.

Creation Transition External A new cluster is created by the cluster method.
Announces a new operation mode or rapid
degradation / failure.

Merge Transition External Two previously existing clusters are merged into one.
Two operation modes may exist between which it is
shifted.

Vanish Transition External A previously existing cluster disappears.
Applies only when cluster objects are modelled with
decay or forget mechanisms, which does not apply
to this work‘s implementation

Split Transition External A previously existing cluster is split into two clusters.
Applies only when cluster objects are modelled with
decay or forget mechanisms, which does not apply
to this work‘s implementation

40 J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46

Survive Transition External
The cluster exists in the previous and the current
cluster states.

The system is operated stationarily and shows no
degradation or wear.

Leaving Cluster
Transition

External
If a new incoming data point leaves the cluster
boundaries which the latest data point belonged to.

The system returns to a state it was already in.
The involved clusters may be two reversible
operation modes.

Outlier Transition Global
If outliers exceed a relative threshold (e.g. 10%)
transitioning from one cluster state to the next.

Announces a new operation mode or sudden
degradation / failure. This can be a sign for incipient
faults.

hyperparameter
Transition

Global
If hyperparameters change by a relative threshold
from one state to the next due to estimation
of automatic hyperparameters.

If new hyperparameter values are estimated,
a global change has occurred, e.g. a new system
state, that delivers completely different sensor
readings.

Number of Clusters
Transition

Global
This transition only checks the change in cluster
number from one cluster state to the next.

If the number of clusters increases, see
CreationTransition or SplitTransition.
If the number of clusters decreases, see
MergeTransition or VanishTransition.

Indices Change
Transition

Global
This transition can be computed very fast by
comparing the new cluster indices with the latest.

If cluster indices change from state to state, any
of the above may apply.

The proposed concept allows to find structural changes in the cluster result. These

structural changes arise from the underlying data distribution, hence, the underlying observed

system. Here, the term system describes a machine or component that is being monitored by

sensors. From a CM perspective, the clustering results and historic changes relate to changing

operating conditions, natural wear, or degradation. For the purpose of this work, the assum-

ptions displayed in Table are made. This is an attempt to create explainable clustering results,

when no prior knowledge exists and supervised learning is not possible.

3.2. CLUSTER TRACKING METHOD

During monitoring of a system, new cluster states are continuously created for incoming

data. The course of processing is depicted in the flow chart in Fig. 2a. Starting with capturing

of new data and possible transformations, such as feature extraction, Fourier transformation,

or filtering, new data points are checked for clustering necessity (requiresClustering).

The function verifies whether the new data points are already within existing cluster

boundaries. In that case, the data points are appended to the recent ClusterState. Otherwise,

a new ClusterState is created. In order to determine a datapoint within cluster boundaries, we

approximate the cluster as a polyshape via its boundary points. For 2D (polygon) and 3D

(polyhedron) datasets, we used MATLAB functions [18, 19], which check whether a point is

within a triangulated area or volume. These geometric computations are faster than executing

the clustering algorithm, lowering the execution time of the method compared to the

DBSCAN run each iteration.

Based on this ClusterState, the cluster model data is scanned for ClusterTransitions

within the function trackClusters whose procedure is depicted with pseudo code in Table 2.

This function searches the newly created ClusterState for the cluster transitions defined in

Table 1. After that, the newly created ClusterState and found ClusterTransitions are added to

the model, changes are reported (reportClusterChanges), if asked for, and the next iteration

of captured data can be processed. All acquired clusterStates and corresponding cluster-

Transitions are stored in the cluster model and can be accessed for further analysis. The cluster

model and the required functions are implemented in the class ClusterBoundaryTracking.

J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46 41

Table 2. Pseudo code for trackCluster routine

Fig. 2. Processing flow chart for cluster tracking (a), data structure ClusterState (b)

4. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed approach, two datasets created at

our institute have been used. The first dataset stems from a lifecycle experiment conducted

on a test bench for ball screw drives [20]. The data consists of continuous motor current, axis

position, shaft speed, force, and temperature measurements. During the experiment, two ball

Routine: trackCluster

 𝒄𝒔𝒊, 𝒄𝒔𝒊−𝟏 denote the current and previous clusterState and 𝝉 the threshold for creating a
transition
→: denotes the creation of a transition object

1. if 𝑐𝑠𝑖 . 𝑘𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ≠ 𝑐𝑠𝑖−1. 𝑘𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 →NumberOfClustersTransition
2. if 𝒄𝒔𝒊. 𝒌𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒔 < 𝒄𝒔𝒊−𝟏. 𝒌𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒔 → MergeTransition
3. if 𝒄𝒔𝒊. 𝒌𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒔 > 𝒄𝒔𝒊−𝟏. 𝒌𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒔 → CreationTransition
4. else
5. if

|𝒄𝒔𝒊.𝒅𝒆𝒏𝒔𝒊𝒕𝒊𝒆𝒔−𝒄𝒔𝒊−𝟏.𝒅𝒆𝒏𝒔𝒊𝒕𝒊𝒆𝒔|

𝒄𝒔𝒊−𝟏.𝒅𝒆𝒏𝒔𝒊𝒕𝒊𝒆𝒔
> 𝝉 → CompactnessTransition

6. if
|𝒄𝒔𝒊.𝒔𝒊𝒛𝒆𝒔−𝒄𝒔𝒊−𝟏.𝒔𝒊𝒛𝒆𝒔|

𝒄𝒔𝒊−𝟏.𝒔𝒊𝒛𝒆𝒔
> 𝝉 →SizeTransition

7. if 𝑐𝑠𝑖 . 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ≠ 𝑐𝑠𝑖−1. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑛𝑑𝑖𝑐𝑒𝑠 → IndicesChangeTransition
8. foreach ℎ𝑝𝑖 in 𝑐𝑠𝑖 . ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 and ℎ𝑝𝑖−1 in 𝑐𝑠𝑖−1. ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
9. if |1 −

ℎ𝑝𝑖

ℎ𝑝𝑖−1
| > 𝜏 → HyperparameterChangeTransition

10. 𝑜𝑖 𝑐𝑠𝑖.getOutliers and 𝑜𝑖−1 𝑐𝑠𝑖 . getOutliers
11. if |1 −

𝑜𝑖

𝑜𝑖−1
| > 𝜏 → OutlierChangeTransition

42 J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46

screw nuts were clamped with tension rods on one spindle, as displayed in Fig. 3 (for more

information on the test bench setup, see [21]). The mechanical setup allows for high loads to

be applied on the ball screw and executes cyclic strokes until the component’s failure.

The lifecycle test consists of three normal phases, where different loads have been applied

and a last phase, where failure due to breakage of a raceway groove in the ball screw nut

occurred.

The second dataset consists of acoustic emission measurements of an axial ball bearing

at different shaft speeds [22]. The setup depicted in Fig 3b consists of two separate parts

between which an axial bearing can be clamped. The upper part provides a controlled load

via a pneumatic cylinder, whereas the lower part has a rotational degree of motion and

supplies the driving torque via a stepper motor. The experiments conducted on the test bench

include acoustic emission measurements at different shaft speeds.

We evaluate the performance of our approach in terms of the correct detection of states

which the systems undergo based on the corresponding measurement values (here: motor

current and acoustic emission). In our case, we shall detect cluster transitions between

different load states and shaft speeds.

Both datasets have been captured in advance of the development of this approach.

Thus, they are replayed via a data stream simulation in MATLAB. For the ball screw dataset,

we used temperature (𝑇𝐵𝑆,𝑝𝑒𝑎𝑘) and motor current (𝐼𝑀𝑜𝑡𝑜𝑟,𝑝𝑒𝑎𝑘) peak values as features for

the clustering algorithm.

Fig. 3. Mechanical setup for ball screw drive (a) and axial ball bearing (b)

The complete experimental data sums up to 2302×2 samples and was tracked over

a period of 28 days. These features have been continuously extracted from the data stream

during an experiment, while applying increasing loads on the nut via tension rods until

the component’s failure. Fig. 4 shows the final clustering result for the given data points.

J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46 43

The algorithm finds consistent clusters to the ground truth, but is not able to associate class 2

correctly into one cluster. Datapoints from class 4, representing the ball screw failure, are

only recognized as outliers due to having a lower density than the average of the other clusters.

The increasing number of outliers, however, is properly detected by trackClusters when data

points of class 4 arrive and can be interpreted as anomaly, as mentioned in Table 1.

The dataset of the axial ball bearing consists of acoustic emission measurements during

different shaft speeds of the test bench. The features selected for clustering are the root-mean-

square and peak-to-peak values of the raw acoustic emission data. The test series includes

600×2 samples. The clustering depicted in Fig. 5 represents the final cluster result after

transitioning through different speed states. The upper graph shows the clustering result and

the lower graph the corresponding ground truth. Concerning cluster purity, the clustering

algorithm failed to separate class1 and class2, two close shaft speeds (150 1/min and
200 1/min), due to varying densities in this cluster region and the close vicinity of cluster

points. All other clusters coincide with their classes.

Both clustering results showed deviations from the ground truth, where clusters with

different average densities developed. Here, OPTICS [23] poses an alternative to conven-

tional density-based clustering algorithms.

Also, we can show that each cluster creation is correctly reported during trackClusters.

Tracking of size and density changes are identified as well, but are currently implemented

with a static threshold that reports proportionate changes from one state to the next. Slowly

increasing clusters are therefore not recognized.

Fig. 4. Clustering result for ball screw dataset

Class 1

46 kN

Class 2

51 kN

Class 3

59 kN

Class 4

Raceway Break

Class 5

Force Decrease

Cluster 5

Cluster 4

Cluster 3Cluster 2

Cluster 1

44 J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46

Fig. 5. Clustering result for axial ball bearing dataset

In terms of time efficiency, we can show that our approach saves computing time by

applying the function requiresClustering before each new cluster iteration for new incoming

data. Hence, the number of required cluster iterations can be reduced and therefore up to 50%

of computing time can be saved compared to clustering each iteration for the tested datasets.

Figure 6 shows the performance in terms of required cluster iterations and consumed

time for both datasets. For the computations, we used MATLAB on a common Desktop PC

with an Intel Core i7-4790 processor (@ 3.60GHz, 4 cores). The computation time depicted

in the figure represents the total amount of time elapsed to iteratively cluster the whole dataset

as data points arrive one-by-one.

Fig. 6. Time performance and cluster iterations for new approach and conventional clustering

Cluster1

Class1

150 1/min

Class2

200 1/min

Class3

300 1/min

Class4

400 1/min

Class5

500 1/min

Cluster2

Cluster3

Cluster4

J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46 45

Using DBSCAN as clustering method, we reached cluster purities greater than 96% on

both datasets. A major advantage of this clustering algorithm is its capability to define outliers

without additional logic, which then can be tracked using trackClusters. Besides, DBSCAN

does not require knowledge about the prevailing number of clusters, and its hyperparameters

can be estimated properly using the data distribution. These features enable well-clustered

datapoints without any prior knowledge. Performance drawbacks besides the already

mentioned insensitivity to clusters with varying density have yet to be investigated. In general,

using the procedure provided in Fig. 2 saves computing time by reducing the number of

cluster method executions, leaving more time for other operations, such as the tracking step.

5. CONCLUSION AND OUTLOOK

We introduced a new cluster model to track cluster changes in the context of CM.

The concept introduced allows for effortless integration of other clustering algorithms that

operate on numerical feature spaces, such as DBSCAN [16]. Additionally, we provided an

interpretation in terms of cluster transitions for a CM perspective, presented in Table 1. So

far, we implemented basic cluster transitions to show the feasibilty of the tracking

mechanism. More complex transitions, such as LeavingClusterTransition or Location-

Transitions, have yet to be implemented. The current version of ClusterBoundaryTracking is

conceived for 1D, 2D, or 3D data. In the case of data with more dimensions, a new generalized

concept for high-dimensional cluster boundaries has to be conceived. This deficiency

currently disqualifies ClusterBoundaryTracking for datasets with more than three dimensions

and nonnumeric properties.

In further works, we will address the implementation of further cluster transitions and

specifically concentrate on their CM interpretation. The abovementioned LeavingCluster-

Transition and a ReturnToClusterTransition will be considered for further investigation.

If newly clustered data points leave the previous cluster or return to an older cluster, our

tracking approach shall assume that the observed system migrates to a new state or returns to

an old state. Tracking these transitions enables the monitoring application to determine system

states that have never been defined a priori but learned during the operation. This hypothesis

will require further testing of the approach. We will therefore extend the used datasets and

conduct other life cycle experiments.

So far, the clustering algorithm (DBSCAN) is run each iteration for all data points. This

still imposes the greatest time consumption. In order to further reduce computing time, we

plan on implementing incremental DBSCAN [24]. This algorithm does not cluster the whole

dataset each time a new clustering is required. Instead, it only extends the existing clusters

based on the new data points’ vicinity to existing data points.

ACKNOWLEDGEMENTS

This research work is funded by DFG - Deutsche Forschungsgemeinschaft (German Research Foundation) – Project

388141462.

46 J. Hillenbrand and J. Fleischer/Journal of Machine Engineering, 2021, Vol. 21, No. 2, 35–46

REFERENCES

[1] MÄRZ M., 2017, Maintenance 4.0 Bestimmt Profitabilität der Fabrik von Morgen: White Paper zu Predictive

Maintenance, Mobile Instandhaltung und Asset Innovation, VDI-Z Integrierte Produktion, 159, 52–53.

[2] UHLMANN E., HOHWIELER E., GEISERT C., 2017, Intelligent Production Systems in the Era of Industry 4.0:

Changing Mindsets and Business Models, Journal of Machine Engineering, 17/2, 5–24.

[3] CELEBI M.E., AYDIN K., 2016, Unsupervised Learning Algorithms, Springer.

[4] SAARI J., ODELIUS J., 2018, Detecting Operation Regimes Using Unsupervised Clustering with Infected Group

Labelling to Improve Machine Diagnostics and Prognostics, Operations Research Perspectives, 5, https://doi.org/

10.1016/j.orp.2018.08.002, 232–244.

[5] HENZINGER P., RAGHAVAN S., RAJAGOPALAN M.R., 1998, Computing on Data Streams, SRC Technical

Note, 011, https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A341F8AD36C78BF4B067C0A3456EA10

F?, doi=10.1.1.19.9554&rep=rep1&type=pdf.

6] ZHANG T., RAMAKRISHNAN R., LIVNY M., 1996, BIRCH: An Efficient Data Clustering Method for Very

Large Databases, SIGMOD Rec., 25, https://doi.org/10.1145/235968.233324, 103–114.

[7] SILVA J.A., FARIA E.R., BARROS R.C., HRUSCHKA E.R., DE CARVALHO A.C.P.L.F. GAMA J., 2013, Data

Stream Clustering, ACM Comput. Surv., 46, https://doi.org/10.1145/2522968.2522981, 1–31.

[8] MathWorks, 2021, Condition Monitoring and Prognostics Using Vibration Signals, https://www.mathworks.

com/help/predmaint/ug/condition-monitoring-and-prognostics-using-vibration-signals.html.

[9] AGGARWAL C.C., YU P.S., HAN J., WANG J., 2003, A Framework for Clustering Evolving Data Streams,

Proceedings of the Twenty-Ninth International Conference on Very Large Databases, Berlin, Germany, 9–12

Morgan Kaufmann Publishers/Elsevier Science, St Louis, MO, 81–92.

[10] KRANEN P., ASSENT I., BALDAUF C., SEIDL T., 2009, Self-Adaptive Anytime Stream Clustering, 2009, Ninth

IEEE International Conference on Data Mining, Miami Beach, FL, USA, IEEE, 249–258.

[11] CHEN Y., TU L., 2007, Density-Based Clustering for Real-Time Stream Data, Proceedings of the Thirteenth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA.

[12] NAMITHA K., SANTHOSH KUMAR G., 2020, Learning in the Presence of Concept Recurrence in Data Stream

Clustering, J. Big Data, 7/1, 1–28, https://doi.org/10.1186/s40537-020-00354-1.

[13] SERIR L., RAMASSO E., ZERHOUNI N., 2012, Evidential Evolving Gustafson–Kessel Algorithm for Online Data

Streams Partitioning Using Belief Function Theory, International Journal of Approximate Reasoning, 53/5, 747–

768, https://doi.org/10.1016/j.ijar.2012.01.009.

[14] SPILIOPOULOU M., NTOUTSI I., THEODORIDIS Y., SCHULT R., 2006, MONIC: Modeling and Monitoring

Cluster Transitions, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining – KDD-06, Philadelphia, PA, USA, ACM Press, New York, USA, 706–711.

[15] PUTRG G.H., READ M.N., KOPRINSKA I., SINGH D., RÖHM U., ASHHURST T.M., KING N.J., 2019,

ChronoClust: Density-Based Clustering and Cluster Tracking in High-Dimensional Time-Series Data, Knowledge-

Based Systems, 174, 9–26, https://doi.org/10.1016/j.knosys.2019.02.018.

[16] ESTER M., KRIEGEL H.-P., SANDER J., XU X., 1996, A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise, AAAI (Hg.) KDD-96 Proceedings, 226–231.

[17] SCHUBERT E., SANDER J., ESTER M., KRIEGEL H.P., XU X., 2017, DBSCAN Revisited, ACM Trans. Database

Syst., 42, 1–21, https://doi.org/10.1145/3068335.

[18] SVEN, 2021, Inpolyhedron – are points inside a triangulated volume? MATLAB Central File Exchange,

https://www.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron-are-points-inside-a-triangulated-vo

lume.

[19] MathWorks Inpolygon, 2006, Points Located Inside or on Edge of Polygonal Region, https://de.mathworks.com-

/help/matlab/ref/inpolygon.html.

[20] HILLENBRAND J., 2020, Ball Screw Failure – Dataset: v1, https://git.scc.kit.edu/ml-wzmm_public/ballscrew

loadfailure_v1.

[21] HILLENBRAND J., SPOHRER A., FLEISCHER J., 2018, Zustandsüberwachung bei Kugelgewindetrieben:

Integration von DMS-Sensorik in Kugelgewindetriebemuttern, wt Werkstattstechnik online, 8, 493.

[22] HILLENBRAND J., 2020, Axial Ball Bearing Speeds v1, ML-WZMM_Public., https://git.scc.kit.edu/mlwzmm

public/Axial_Ball_Bearing_Speeds_v1.

[23] ANKERST M., BREUNIG M.M., KRIEGEL H.-P., SANDER J., 1999, OPTICS: Ordering Points to Identify the

Clustering Structure, SIGMOD Rec., 28,49–60, https://doi.org/10.1145/304181.304187.

[24] ESTER M., KRIEGEL H.-P., SANDER J., WIMMER M., XU X., 1998, Incremental Clustering for Mining in

a Data Warehousing Environment, Proceedings of the 24th VLDB Conference New York, USA.

https://doi.org/
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A341F8AD36C78BF4B067C0A3456EA10%20F
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A341F8AD36C78BF4B067C0A3456EA10%20F
https://www.mathworks/
https://www.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron-are-points-inside-a-triangulated-vo%20lu
https://www.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron-are-points-inside-a-triangulated-vo%20lu
https://git.scc.kit.edu/ml-wzmm_public/ballscrew
https://git.scc.kit.edu/mlwzmm

